Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting
نویسندگان
چکیده
This paper presents a methodology to determine simultaneously (a) the flow stress at high deformation rates and temperatures that are encountered in the cutting zone, and (b) the friction at the chip–tool interface. This information is necessary to simulate high-speed machining using FEM based programs. A flow stress model based on process dependent parameters such as strain, strain-rate and temperature was used together with a friction model based on shear flow stress of the workpiece at the chip–tool interface. High-speed cutting experiments and process simulations were utilized to determine the unknown parameters in flow stress and friction models. This technique was applied to obtain flow stress for P20 mold steel at hardness of 30 HRC and friction data when using uncoated carbide tooling at high-speed cutting conditions. The average strain, strain-rates and temperatures were computed both in primary (shear plane) and secondary (chip–tool contact) deformation zones. The friction conditions in sticking and sliding regions at the chip– tool interface are estimated using Zorev’s stress distribution model. The shear flow stress (kchip) was also determined using computed average strain, strain-rate, and temperatures in secondary deformation zone, while the friction coefficient (m) was estimated by minimizing the difference between predicted and measured thrust forces. By matching the measured values of the cutting forces with the predicted results from FEM simulations, an expression for workpiece flow stress and the unknown friction parameters at the chip– tool contact were determined. 1999 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Analytical and Thermal Modeling of High-Speed Machining With Chamfered Tools
High-speed machining offers several advantages such as increased flexibility and productivity for discrete-part manufacturing. However, excessive heat generation and resulting high temperatures on the tool and workpiece surfaces in high-speed machining leads to a shorter tool life and poor part quality, especially if the tool edge geometry and cutting conditions were not selected properly. In t...
متن کاملInvestigations on the effects of friction modeling in finite element simulation of machining
Accurately predicting the physical cutting process variables, e.g. temperature, velocity, strain and stress fields, plays a pivotal role for predictive process engineering for machining processes. These predicted field variables, however, are highly influenced by workpiece constitutive material model (i.e. flow stress), thermo-mechanical properties and contact friction law at the tool–chip–work...
متن کاملشبیهسازی المان محدود فرایند برش متعامد و تعیین ضخامت لایه چسبنده به ابزار در ناحیه دوم برش
The built up layer thickness in secondary deformation zone is one of the important parameters in metal cutting process. The built up layer (BUL) is formed in second deformation zone near the tool-chip interface in the back of the chip. This parameter influences the tool life and machined surface quality. This BUL should not be confused with the built up edge (BUE). The deformation of the BUL in...
متن کاملChip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”
The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...
متن کاملEstimation of Work Material Flow Stress and Tool-chip Interfacial Friction by Inverse Computation of Modified Oxley’s Model of Machining
Finite Element Analysis (FEA) based techniques have become increasingly available to simulate metal cutting process and offer several advantages including prediction of tool forces, distribution of stresses and temperatures, estimation of tool wear, optimization of cutting conditions, tool edge geometry and coatings, and determination of residual stresses on machined surfaces. However, accuracy...
متن کامل